

**B.A. in Precision Instrument, Shanghai Jiao Tong University** GPA: 3.91/4.3 | Top 30%

# **Selected Research Projects**

| 2024 – Now  | LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors                                                                                                                                                            |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | $\star$ LiftImage <sub>3</sub> D is a universal framework that utilizes video generation priors to lift arbitrary 2D images into 3D Gaussians, which can produce fine-granted 3D generation on both objects and scenes obtained from the web. |
|             | <ul> <li>* Project lead by <i>Jiemin Fang</i> and <i>Hongkai Xiong</i>.</li> <li>* Submitted to <i>CVPR 2025</i></li> </ul>                                                                                                                   |
| 2023 – 2024 | GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting                                                                                                                                                 |
|             | * Aiming to reconstruct finely detailed objects from very sparse inputs (as few as 4 images).<br>Leveraging 3DGS as scene representation and refining a pre-trained diffusion model for<br>strong priors.                                     |
|             | <ul> <li>* Project lead by Wei Shen and Jiemin Fang.</li> <li>* Accepted by ACM Transactions on Graphics (TOG), SIGGRAPH Asia 2024.</li> </ul>                                                                                                |
| 2023        | Segment Anything in 3D with NeRFs                                                                                                                                                                                                             |
|             | $\star$ Leveraging SAM (Segment Anything) to segment NeRFs, provide a generic method to lift 2D foundation models to the 3D space.                                                                                                            |
|             | * Project lead by <i>Wei Shen</i> .<br>* Accepted by <i>NeurIPS 2023</i> .                                                                                                                                                                    |
| 2022 - 2023 | Efficient Deformable Tissue Reconstruction via Orthogonal Neural Plane                                                                                                                                                                        |
|             | <ul> <li>★ Accelerated the optimization and inference on reconstructing deformable tissues with<br/>NeRFs, improving efficiency and quality across non-rigid deformations.</li> <li>★ Project lead by <i>Wei Shen</i>.</li> </ul>             |
|             | * Accepted by MICCAI 2023, Young Scientist Award and IEEE Transactions on Medical<br>Imaging (TMI).                                                                                                                                           |

## Selected Research Projects (continued)



### **Internship Experience**

| 2023 – 2024 | <b>3D Vision Intern, Huawei Cloud</b> , mentored by <i>Jiemin Fang</i> and <i>Qi Tian</i><br>* Designed and implemented GaussianObject project, which enables high-quality 3D object reconstruction from very sparse inputs (as few as 4 images);                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2021 – 2022 | <ul> <li>* Paper accepted by SIGGRAPH Asia 2024 (10G), work is open-sourced and widely rec-<br/>ognized (800+ GitHub Stars).</li> <li>Machine Vision Intern, Huawei Noah's Ark Lab, mentored by Weichao Qiu</li> </ul>                                                                                         |
|             | <ul> <li>* Designed and implemented NeRFVS project, significantly improving the extrapolation capability of neural radiance fields;</li> <li>* Proposed geometry scaffolds method, substantially enhancing scene reconstruction quality and extrapolation performance, paper accepted by CVPR 2023.</li> </ul> |

### **Awards and Achievements**



## Awards and Achievements (continued)

**First Prize of Huawei Chinese University ICT Competition**, Awarded top 1 among 88 teams.

2019 – 2021

**First-class Academic Scholarship**, Awarded to top 30% of students at Shanghai Jiao Tong University.

#### **Research Publications**

- 1 Y. Yan, Z. Zhou, Z. Wang, C. Yang, J. Gao, and X. Yang, "Dialoguenerf: Towards realistic avatar face-to-face conversation video generation," *Visual Intelligence*, vol. 2, no. 1, p. 24, 2024.
- **C. Yang**, S. Li, J. Fang, *et al.*, "Gaussianobject: Just taking four images to get a high-quality 3d object with gaussian splatting," *ACM Trans. on GRAPHICS*, 2024.
- **C. Yang**, K. Wang, Y. Wang, Q. Dou, X. Yang, and W. Shen, "Efficient deformable tissue reconstruction via orthogonal neural plane," *IEEE Transactions on Medical Imaging*, 2024.
- **C. Yang**, K. Wang, Y. Wang, *et al.*, "Endogslam: Real-time dense reconstruction and tracking in endoscopic surgeries using gaussian splatting," in *International Conference on Medical Image Computing and Computer-Assisted Intervention*, Springer, 2024, pp. 219–229.
- **5 C. Yang**, H. Zhao, H. Wang, and W. Shen, "Chase: 3d-consistent human avatars with sparse inputs via gaussian splatting and contrastive learning," *arXiv preprint arXiv:2408.09663*, 2024.
- **C. Yang**, H. Zhao, H. Wang, X. Zhao, and W. Shen, "Sg-gs: Photo-realistic animatable human avatars with semantically-guided gaussian splatting," *arXiv preprint arXiv:2408.09665*, 2024.
- J. Cen, J. Fang, **C. Yang**, et al., "Segment any 3d gaussians," CoRR, 2023.
- J. Cen, Z. Zhou, J. Fang, et al., "Segment anything in 3d with nerfs," Advances in Neural Information *Processing Systems*, vol. 36, pp. 25 971–25 990, 2023.
- P. Li, S. Wang, **C. Yang**, B. Liu, W. Qiu, and H. Wang, "Nerf-ms: Neural radiance fields with multi-sequence," in *Proceedings of the IEEE/CVF International Conference on Computer Vision*, 2023, pp. 18591–18600.
- **C. Yang**, P. Li, Z. Zhou, *et al.*, "Nerfvs: Neural radiance fields for free view synthesis via geometry scaffolds," in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2023, pp. 16549–16558.
- **11 C. Yang**, K. Wang, Y. Wang, X. Yang, and W. Shen, "Neural lerplane representations for fast 4d reconstruction of deformable tissues," in *International Conference on Medical Image Computing and Computer-Assisted Intervention*, Springer Nature Switzerland Cham, 2023, pp. 46–56.
- 12 R. Liang, J. Zhang, H. Li, **C. Yang**, Y. Guan, and N. Vijaykumar, "Spidr: Sdf-based neural point fields for illumination and deformation," *arXiv preprint arXiv:2210.08398*, 2022.
- **C. Yang**, S.-Y. Yao, Z.-W. Zhou, B. Ji, G.-T. Zhai, and W. Shen, "Poxture: Human posture imitation using neural texture," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 32, no. 12, pp. 8537–8549, 2022.
  - Z. Zhou, R. Zhong, **C. Yang**, Y. Wang, X. Yang, and W. Shen, "A k-variate time series is worth k words: Evolution of the vanilla transformer architecture for long-term multivariate time series forecasting," *arXiv preprint arXiv:2212.02789*, 2022.
- B. Ji, **C. Yang**, Y. Shunyu, and Y. Pan, "Hpof: 3d human pose recovery from monocular video with optical flow," in *Proceedings of the 2021 International Conference on Multimedia Retrieval*, 2021, pp. 144–154.