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1 Introduction
3D scene reconstruction from images has emerged as a fundamental technology that underpins
numerous real-world applications. In autonomous driving, accurate 3D scene understanding en-
ables vehicles to navigate safely and make informed decisions. In augmented reality (AR), re-
constructed 3D environments allow virtual objects to interact naturally with the physical world.
For digital content creation, efficient 3D reconstruction tools can dramatically reduce the time
and cost of creating virtual assets for games, movies, and the metaverse.

Traditional 3D reconstruction approaches typically require hundreds of densely captured
images to achieve high-quality results. However, in many practical scenarios, obtaining such
dense captures is either impossible or highly impractical. For instance, autonomous vehicles
must make decisions based on sparse temporal observations, AR applications expect imme-
diate reconstruction from just a few casual photos, and historical preservation projects often
only have access to a limited number of archive photos. Recent advances in neural rendering,
particularly Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have revo-
lutionized the field by enabling photorealistic novel view synthesis. These methods achieve
impressive visual quality through implicit or explicit neural representations and differentiable
rendering. However, they require extensive per-scene optimization, typically taking hours for
NeRF and over 10 minutes for 3DGS. Moreover, they rely heavily on accurate camera poses
from structure-from-motion pre-processing and dense image captures, making them impracti-
cal for many real-world applications.

Sparse-view reconstruction faces several fundamental challenges that make it particularly
difficult. 1) Geometric ambiguity arises from insufficient parallax and viewpoint coverage.
With only a few input views, multiple 3D geometries could potentially explain the same obser-
vations, especially in textureless regions or areas viewed from limited angles. 2) The sparsity
of views often means large baselines between cameras, leading to significant appearance vari-
ations and occlusions that complicate feature matching and correspondence establishment. 3)
The reconstructed geometry tends to be incomplete due to unobserved regions, requiring ef-
fective mechanisms to reason about and fill in missing scene content.

Prior works have explored various approaches to inject additional priors (e.g. total varia-
tion, depth, entropy, semantics) into sparse-view reconstruction to constrain the solution space.
These approaches have demonstrated impressive results for per-scene optimization in con-
trolled settings. However, these prior-based methods face significant limitations for practical
applications. The underlying priors are often not universally applicable across diverse real-
world scenarios. Semantic priors may fail when encountering novel object categories or un-
usual scene compositions. Geometric regularization terms that work well for man-made en-
vironments might not generalize to natural scenes. Moreover, the reliance on per-scene opti-
mization incurs substantial computational costs, typically requiring minutes or hours to process
each new scene. This combination of limited generalizability and slow processing speed hin-
ders their adoption in applications requiring robust and efficient reconstruction.

In this proposal, I choose to leverage 3D pre-trained models to address the aforementioned
challenges. Pre-trained models have demonstrated remarkable capabilities in learning rich
geometric and semantic priors from large-scale datasets, offering several key advantages for
sparse-view reconstruction. First, they can encode comprehensive scene understanding that
generalizes across diverse environments, potentially resolving geometric ambiguities through
learned structural priors. Second, their feed-forward nature enables efficient inference without
expensive per-scene optimization, reducing reconstruction time from hours to seconds. Third,
pre-trained models can integrate multi-modal information, from geometric relationships to se-
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mantic understanding, providing a more holistic approach to scene reconstruction. Building
upon these advantages, there are currently three different ways to achieve the target, and I will
demonstrate their advantages and disadvantages in the Proposed Research section.

2 Related Work
Sparse View Reconstruction with Geometric Priors Vanilla NeRF (Mildenhall et al., 2020)
typically require dense view sampling for high-quality reconstruction. To address sparse view
scenarios, various geometric priors have been explored. Several methods leverage Structure
from Motion (SfM) (Schönberger and Frahm, 2016) derived information, such as visibility
maps or depth estimates (Deng et al., 2022; Roessle et al., 2022; Somraj and Soundararajan,
2023; Somraj et al., 2023, 2024). While effective, these approaches primarily work with closely
aligned views. Alternative approaches utilize depth information, either from ground truth depth
maps (Xu et al., 2022) or monocular depth estimation models (Song et al., 2023a; Guangcong
et al., 2023; Ranftl et al., 2022, 2021), though the latter often produce results too coarse for
detailed reconstruction.

Learning-based Priors and Regularization Various learning-based priors have been pro-
posed to improve sparse view reconstruction. Shi et al. (2024a) combines deep image priors
with factorized NeRF to capture overall appearance, though fine details may be lost. Jain et al.
(2021) leverages vision-language models (Radford et al., 2021) for novel view synthesis, but
the semantic guidance proves too abstract for accurate low-level reconstruction. Other ap-
proaches explore priors based on information theory (Kim et al., 2022), continuity (Niemeyer
et al., 2022), symmetry (Seo et al., 2023), and frequency regularization (Yang et al., 2023; Song
et al., 2023b), though their effectiveness is often limited to specific scenarios. Recent methods
have also incorporated Vision Transformers (ViT) (Dosovitskiy et al., 2021) to reduce the re-
quirements for NeRFs and Gaussians (Jiang et al., 2024; Jang and Agapito, 2024; Xu et al.,
2024a; Zou et al., 2024).

Diffusion Models for 3D Reconstruction The emergence of diffusion models has revolu-
tionized 3D reconstruction through their powerful generative capabilities. Dreamfusion (Poole
et al., 2023) pioneered this direction by introducing Score Distillation Sampling (SDS), which
enabled the distillation of 2D diffusion priors into NeRFs for text-to-3D generation. This break-
through sparked numerous extensions in text-to-3D synthesis (Lin et al., 2023; Metzer et al.,
2023; Wang et al., 2023a; Chen et al., 2023; Wang et al., 2023b; Yi et al., 2024; Tang et al.,
2024b; Shi et al., 2024b) and 3D/4D editing applications (Haque et al., 2023; Shao et al., 2024).

For sparse view reconstruction, several approaches have been developed. Single-image
methods (Zhu and Zhuang, 2024; Chan et al., 2023; Liu et al., 2023a; Burgess et al., 2024; Pan
et al., 2024; Müller et al., 2024) leverage diffusion models to hallucinate novel views, though
they often struggle with input constraints and image saturation. To address occluded regions,
GaussianObject (Yang et al., 2024) introduces a fine-tuned Control-Net (Zhang et al., 2023) as
a repair model. Other methods (Wynn and Turmukhambetov, 2023; Zhou and Tulsiani, 2023;
Liu et al., 2023b; Wu et al., 2024) explore fine-tuning text-to-image models for simultaneous
multi-view generation, effectively transferring knowledge from 2D image-space priors.

Recent advances in Latent Video Diffusion Models (LVDM) have opened new possibilities
for sparse view synthesis. Cat3D (Gao et al., 2024) builds upon video and multi-view diffusion
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models to generate highly consistent novel views, while ViewCrafter (Yu et al., 2024) fine-
tunes Stable Video Diffusion to condition on differentiable point rasterization for realistic view
synthesis.

Feed-forward Methods Recent advances in sparse view reconstruction have led to two major
directions: Large Reconstruction Models (LRMs) and neural matching approaches. LRMs (Hong
et al., 2024b; Wang et al., 2024a; Xu et al., 2024c; Wei et al., 2024; Xu et al., 2024b; Li et al.,
2024; Tang et al., 2024a; Weng et al., 2023; Zhang et al., 2024) offer impressive speed through
direct feed-forward generation. Feed-forward reconstruction methods have shown impressive
performance and inference speed among sparse and single-image reconstruction. However,
they currently face several limitations: sensitivity to view distributions and object placements,
challenges in handling real-world scenarios, and generally lower quality compared to methods
leveraging image-space priors.

A parallel development in neural matching has emerged to address the fundamental chal-
lenge of camera pose estimation. Traditional reconstruction methods often require precise
camera parameters, which typically demand dense views to obtain reliably. DUSt3R (Wang
et al., 2024b) pioneered a novel approach by predicting point maps for uncalibrated stereo
pairs within a unified coordinate system through implicit correspondence searching. Building
upon this foundation, MASt3R (Leroy et al., 2024) enhanced the image-matching process by
predicting points in metric space, achieving superior accuracy. These methods demonstrate
remarkable stereo reconstruction capabilities even with minimal view overlap. The success
of pixel-aligned point maps has inspired several recent methods (Ye et al., 2024; Smart et al.,
2024) to integrate DUSt3R or MASt3R architectures with Gaussian heads for direct 3D Gaus-
sian generation. While these approaches excel at two-view reconstruction, their performance
deteriorates with additional views, inheriting the multi-view limitations of their underlying
DUSt3R/MASt3R frameworks. This scalability challenge remains an active area of research in
feed-forward reconstruction methods.

3 Proposed Research

3.1 Task Definition and Target
Given a set of N sparse views (typically N = 3-9) of a scene with corresponding camera poses,
our goal is to reconstruct a complete and accurate 3D representation of the scene. Formally, let
I = {I1, ..., IN} be the input RGB images where Ii ∈ RH×W×3, and P = {P1, ..., PN} be their
corresponding camera poses where Pi ∈ SE(3) represents the extrinsic camera parameters.
The target is to learn a mapping function f that generates a 3D scene representation S:

S = f(I,P ; θ) (1)

where θ represents the learnable parameters of our model, and S can be rendered to novel views
Î through a differentiable rendering function R:

Î = R(S, Pnovel) (2)

The reconstructed representation S should satisfy the following key requirements:

1. Geometric Accuracy: The reconstructed geometry should accurately match the ob-
served views and maintain consistency with real-world physics and structural constraints.
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2. Completeness: Despite limited input views, the reconstruction should plausibly com-
plete unobserved regions of the scene while maintaining global consistency.

3. Efficiency: The reconstruction process should be completed within seconds rather than
minutes or hours, making it practical for real-world applications.

4. Generalizability: The method should work effectively across diverse scene types with-
out requiring per-scene optimization or fine-tuning.

3.2 Methodology
Based on recent advances in 3D pre-trained models, I identify three promising approaches to
address this challenging task. First, I define our scene representation S as a set of 3D Gaussians:

S = {µj, αj, rj, sj, cj}Kj=1, (3)

where K is the number of Gaussians, µj ∈ R3 represents the 3D position, αj ∈ (0, 1) denotes
opacity, rj ∈ R4 is rotation in quaternion form, sj ∈ R3 indicates scaling factors, and cj ∈
R3 represents RGB color (for simplification, here I use color cj instead of SH, Spherical
Harmonics).

3.2.1 Transformer-based Feed-forward Model

The transformer-based approach, represented by GS-LRM (Zhang et al., 2024) and Long-
LRM (Ziwen et al., 2024), offers a direct and effective solution for sparse-view reconstruction.
These methods leverage the powerful context modeling capability of transformers to learn both
local and global scene priors from large-scale datasets.

Architecture Design The core of this approach is a pure transformer architecture that directly
maps sparse input views to the defined scene representation through:

S = fθ(I,P) (4)

where I = {Ii}Ni=1 and P = {Pi}Ni=1 are input images and camera poses respectively. The
posed images are first tokenized through patch embedding into tokens ti ∈ Rd, with camera
parameters encoded using Plücker coordinates [o,d] ∈ R6 that combine ray origin and direc-
tion.

Key Advantages This transformer-based approach effectively addresses the challenges of
sparse-view reconstruction. The self-attention mechanism enables the model to leverage both
local and global context when determining 3D structure, helping resolve geometric ambigui-
ties. The learned feature transformations can handle large baselines and appearance variations
between views. Additionally, the feed-forward nature allows fast inference (∼0.23s per scene),
making it practical for real-world applications.

Limitations Despite its effectiveness, this approach currently has resolution constraints (typ-
ically limited to 512×904) and requires images with accurate camera poses and same intrinsics
as input. The reconstruction is also limited to observed regions within the view frustum, with
limited ability to hallucinate unseen areas. Additionally, like most transformer-based meth-
ods, it requires significant computational resources for training due to the quadratic attention
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Figure 1: The pipeline of GS-LRM.

complexity. The model’s performance is highly dependent on the pre-training strategy and the
diversity of the training dataset. Observations on GS-LRM indicate that the synthesized images
at the scene level are quite blurry and fail to accurately recover compressed information that ig-
nored during capturing*. Moreover, since LRMs are proposed by Adobe and not open-sourced,
current publicly available implementations cannot achieve the same level of performance as
reported in their paper, making it challenging for the research community to build upon and
improve this approach.

3.2.2 Multi-View/Video Diffusion Model

Video diffusion models, represented by CAT3D and ViewCrafter, provide a powerful frame-
work for sparse-view reconstruction through consistent novel view synthesis. These models
leverage the temporal coherence inherent in multi-view/video data to generate geometrically
consistent novel views from sparse inputs.

Architecture Design Taking CAT3D for example, the model operates in two stages:

zi = E(Ii) ∈ RH/8×W/8×d, Ii ∈ I (5)

where E is a pre-trained VAE encoder that compresses input images into a lower-dimensional
latent space. The latent codes zi capture high-level semantic and geometric information while
reducing computational overhead.

Î = fθ({zi, Pi}Ni=1, {Pnovel}) (6)

The diffusion model fθ takes both the encoded latent vectors and camera poses as input to gen-
erate novel views Î. This model employs 3D self-attention mechanisms to ensure consistency
across generated views. The final scene representation S is reconstructed from the expanded
set of views using traditional 3D reconstruction methods like NeRF or Gaussian Splatting.

Key Advantages The video diffusion approach addresses reconstruction challenges by learn-
ing consistent scene representations through joint multi-view generation. The 3D self-attention
mechanism helps maintain geometric consistency across different viewpoints. It enables fast

*When the view is orthogonal to the surface of the object, the observed information attached to the surface
can be largely preserved; On the contrary, the information will be severely compressed.
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Figure 2: The pipeline of CAT3D

generation (∼5s for 80 views) through efficient parallel sampling. By generating multiple con-
sistent views, these methods provide robust input for traditional 3D reconstruction pipelines,
allowing them to better handle challenging sparse-view scenarios. Compared with transformer-
based feed-forward methods, these approaches can effectively handle scene-level reconstruc-
tion from sparse views, dealing with complex geometry and varying appearance.

Limitations These models struggle with varying camera intrinsics across different views,
limiting their applicability to multi-camera setups. While the consistency has been greatly im-
proved, the generated views may still contain minor inconsistencies that can affect final 3D re-
construction quality. Moreover, the effectiveness depends heavily on carefully designed camera
trajectories, which can be challenging to determine automatically for complex environments.

3.2.3 Neural Matching Models

Neural matching-based methods, represented by DUSt3R (Wang et al., 2024c), introduce a
paradigm shift in 3D vision by predicting pointmaps - dense 2D fields of 3D points that form
a one-to-one mapping between image pixels and scene points (Ii,j ↔ Xi,j), without requiring
any prior camera calibration or pose information. The key innovation lies in expressing multi-
ple pointmaps in a common canonical coordinate frame, enabling direct dense reconstruction
from unconstrained image collections. Unlike traditional pipelines that rely on sequential steps
(feature matching, pose estimation, then dense reconstruction), DUSt3R unifies these tasks
through end-to-end learning using a transformer-based architecture. This COLMAP-free prop-
erty makes 3D reconstruction more accessible and has motivated several subsequent works.
For example, Splatt3R (Ye et al., 2024), NoPoSplat (Ye et al., 2024) and PF3plat (Hong et al.,
2024a) propose to train a Gaussian head to directly predict pixel-aligned 3D Gaussians. In this
way, they method achieve two-view reconstruction with high-quality novel view synthesis.
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Figure 3: The pipeline of DUSt3R

Architecture Design The core architecture maps an uncalibrated image pair to pointmaps in
a canonical coordinate system:

fθ : {I1, I2} 7→ {X1,1, X2,1, C1, C2} (7)

where Xi,j ∈ RW×H×3 represents the pointmap from view i expressed in view j’s coordinate
frame (aligned with first view), and Ci ∈ RW×H is the associated confidence map. For camera
intrinsics estimation, since X1,1 is expressed in I1’s coordinate frame, the focal length f ∗

1 can
be recovered through:

f ∗
1 = argmin

f1

W∑
i=0

H∑
j=0

Ci,j
1,1

∥∥∥∥∥(i′, j′)− f1
(X i,j,0

1,1 , X i,j,1
1,1 )

X i,j,2
1,1

∥∥∥∥∥ (8)

where (i′, j′) are centered pixel coordinates. For relative pose estimation between views, given
pointmaps X1,1 and X1,2, the relative pose P ∗ = [R∗|t∗] can be obtained through:

R∗, t∗ = argmin
α,R,t

∑
i

Ci
1,1C

i
1,2∥α(RX i

1,1 + t)−X i
1,2∥2 (9)

Multi-view Processing For N-view reconstruction, DUSt3R first constructs a connectivity
graph G(V,E) where images form vertices V and edges E indicate shared visual content. The
globally aligned pointmaps {χn}Nn=1 are then recovered by optimizing:

χ∗ = arg min
χ,P,α

∑
e∈E

∑
v∈e

HW∑
i=1

Cv,e
i ∥χv

i − αeP eXv,e
i ∥ (10)

where P e and αe are the pose and scale for each pair e, enforcing
∏

e α
e = 1 to avoid trivial

solutions.

Key Advantages This point-based approach offers unique benefits: (1) Direct prediction in
canonical coordinates eliminates the need for explicit camera poses and intrinsics during recon-
struction; (2) The dense point representation enables reliable geometry and camera parameter
estimation across wide baselines; (3) The global optimization allows consistent multi-view fu-
sion without traditional bundle adjustment; (4) Equipped with Gaussian head, these methods
can directly reconstruct scenes from sparsely collected images, and perform novel view syn-
thesis.
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Figure 4: The whole pipeline of my proposal.

Limitations Like all uncalibrated reconstruction methods, these methods suffer from scale
ambiguity in the reconstructed geometry. More critically, the pairwise processing design in-
troduces significant scalability issues - for N input images, the method needs to perform

(
N
2

)
pair matches, making it computationally expensive for large image sets. While the subsequent
global matching can align these pairwise reconstructions, the lack of bundle adjustment means
reconstruction quality degrades noticeably as the number of input views increases, particularly
in terms of geometric consistency across distant views. This degradation becomes more pro-
nounced when processing long sequences or large-scale scenes with many input images.

3.3 My Proposal
Based on the analysis of current approaches, achieving high-quality sparse scene reconstruction
inevitably involves trade-offs between different desirable properties. Through careful examina-
tion of the limitations and advantages of existing methods, I identify three crucial requirements
for an effective solution: First, the approach should be pose-free, eliminating the dependency
on accurate camera poses that often creates a bottleneck in real-world applications. Second, the
method should be feed-forward in nature, directly outputting 3D scene representations with-
out requiring expensive per-scene optimization or iterative refinement. Third, the approach
must be flexible enough to handle variable numbers of input views while maintaining recon-
struction quality.

To satisfy these requirements, I propose a novel hybrid approach that combines the strengths
of transformer-based feed-forward models (like GS-LRM) and neural matching methods (like
DUSt3R). This unified framework aims to leverage both the efficient scene-level understanding
capabilities of transformers and the robust pose-free matching mechanism of pointmap-based
methods.

3.3.1 Pipeline

The overall pipeline of my proposed approach is illustrated in Fig. 4. My Scene Reconstruction
Model (SRM) consists of three main components: Image Tokenization and View Encoding;
ViT Decoder; and Gaussian Parameter Prediction Heads. This proposal presents my prelim-
inary design adapted from prior researches. The network architecture requires further opti-
mization and validation to meet task requirements.
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Image Tokenization and View Encoding In the first stage of my pipeline, I focus on trans-
forming input images into latent representations optimized for multi-view reasoning. I utilize a
ViT encoder pre-trained on CroCo (Weinzaepfel et al., 2022) to convert each input image into
token sequences through shared-weight encoding. To establish a consistent reconstruction ref-
erence frame, I introduce learnable source and reference tokens that define a canonical space for
scene representation, which is inspired by Wang et al. (2024a); Peebles and Xie (2023). These
view encoding vectors enable reconstruction relative to a fixed source view while supporting
pose estimation across arbitrary input views.

ViT Decoder The tokenized representations from multiple views are concatenated into a uni-
fied sequence and processed by a ViT decoder comprising L transformer blocks. Each block
consists of a self-attention layer that models relationships between all tokens, followed by a
MLP. To facilitate effective multi-view reasoning and geometric consistency, SRM incorporates
cross-attention mechanisms between different views. Specifically, these cross-attention layers
enable each view’s tokens to attend to and aggregate information from other views, capturing
both local correspondences and global scene structure. At the decoder’s output, the processed
features are partitioned into view-specific representations, with each partition corresponding to
one input frame while maintaining the learned geometric relationships established through the
attention mechanisms.

Gaussian Parameter Prediction Heads To generate 3D representations for high-quality
novel view synthesis, SRM employs two DPT-based (Ranftl et al., 2021) prediction heads. The
first head predicts Gaussian center positions using transformer decoder features exclusively,
following DUSt3R and MASt3R. The second head predicts remaining Gaussian parameters
using both ViT decoder features and direct RGB input. This RGB shortcut enables efficient
texture information flow, which is critical for preserving fine details in the 3D reconstruction.

4 Current Research Matching
I have worked in 3D reconstruction for several years, with 6 first authored papers published in
top venues. My track record in developing practical 3D vision solutions (e.g., GaussianObject
with 900+ GitHub stars) demonstrates my ability to deliver impactful research outcomes in
this direction. I show some related experience as follows:

Sparse Object Reconstruction As the lead author of GaussianObject (Accepted by SIG-
GRAPH Asia 2024), I developed techniques for high-quality 3D reconstruction from as few
as 4 images. By introducing visual hull constraints and floater elimination, the method builds
reliable multi-view consistency even with extremely sparse inputs. To address the information
compression, I propose to finetune a Control-Net with self-feeding manner and then distill the
rich object prior to the reconstruction of target object.

Single Image to 3D Scene In LiftImage3D, I explored leveraging video diffusion models’
generative prior for single-image 3D reconstruction. The work proposes a distortion-aware 3D
Gaussian representation using hexplanes to jointly model 3D geometry and generation-induced
distortions.

11



Pose-Free Reconstruction I have developed a COLMAP-free variant in GaussianObject that
achieves competitive quality without requiring pre-given camera poses. This experience with
pose-free reconstruction through neural matching directly supports our proposed neural match-
ing approach.

The proposed research addresses critical challenges in 3D vision that impact applications
from autonomous driving to augmented reality. As these technologies become increasingly
vital, developing robust and efficient 3D understanding systems is essential. My expertise in
neural matching, multi-view geometry, and generative models, demonstrated through high-
impact publications and widely-adopted open-source work, positions me ideally to advance
this important field through novel, practical solutions that bridge current theoretical and applied
gaps.
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